A NEW THEORY ABOUT THE EARTHQUAKES
  Home Page | Photo Page | Photo2 Page | Photo4 Page | Photo5 Page | Photo6 Page  

THE GRAVITY EFFECTS OF THE SUN AND THE MOON ON THE EARTH IN THE SOLAR SYSTEM
THIS IS MY SPECIAL RESEARCH ABOUT THE REASONS OF EARTHQUAKES AND VOLCANIC ACTIVITIES



prepared by:
HARUN GUCLU
(physicist)


The world's earthquakes are not randomly distributed over the Earth's surface. They tend to be concentrated in narrow zones. Why is this? And why are volcanoes and mountain ranges also found in these zones, too?

Plate tectonics tells us that the Earth's rigid outer shell (lithosphere) is broken into a mosaic of oceanic and continental plates which can slide over the plastic aesthenosphere, which is the uppermost layer of the mantle. The plates are in constant motion. Where they interact, along their margins, important geological processes take place, such as the formation of mountain belts, earthquakes, and volcanoes.

The lithosphere covers the whole Earth. Therefore, ocean plates are also involved, more particularly in the process of sea-floor spreading. This involves the midocean ridges which are a system of narrow submarine cracks that can be traced down the center of the major oceans. The ocean floor is being continuously pulled apart along these midocean ridges. Hot volcanic material rises from the Earth's mantle to fill the gap and continuously forms new oceanic crust. The midocean ridges themselves are broken by offsets know as transform faults.


Plate tectonics confirms that there are four types of seismic zones. The first follows the line of midocean ridges. Activity is low, and it occurs at very shallow depths. The point is that the lithosphere is very thin and weak at these boundaries, so the strain cannot build up enough to cause large earthquakes. Associated with this type of seismicity is the volcanic activity along the axis of the ridges (for example, Iceland, Azores, Tristan da Cunha).

The second type of earthquake associated with plate tectonics is the shallow-focus event unaccompanied by volcanic activity. The San Andreas fault is a good example of this, so is the Anatolian fault in Northern Turkey. In these faults, two mature plates are scraping by one another. The friction between the plates can be so great that very large strains can build up before they are periodically relieved by large earthquakes. Nevertheless, activity does not always occur along the entire length of the fault during any one earthquake. For instance, the 1906 San Francisco event was caused by breakage only along the northern end of the San Andreas fault.

The third type of earthquake is related to the collision of oceanic and continental plates. One plate is thrust or subducted under the other plate so that a deep ocean trench is produced. In the Philippines, ocean trenches are associated with curved volcanic island arcs on the landward plate, for example the Java trench. Along the Peru - Chile trench, the Pacific plate is being subducted under the South American plate which responds by crumpling to form the Andes. This type of earthquake can be shallow, intermediate, or deep, according to its location on the downgoing lithospheric slab. Such inclined planes of earthquakes are know as Benioff zones.

The fourth type of seismic zone occurs along the boundaries of continental plates. Typical of this is the broad swath of seismicity from Burma to the Mediterranean, crossing the Himalayas, Iran, Turkey, to Gilbraltar. Within this zone, shallow earthquakes are associated with high mountain ranges where intense compression is taking place. Intermediate- and deep-focus earthquakes also occur and are known in the Himalayas and in the Caucasus. The interiors of continental plates are very complex, much more so than island arcs. For instance, we do not yet know the full relationship of the Alps or the East African rift system to the broad picture of plate tectonics.


The tectonic plates do not randomly drift or wander about the Earth's surface; they are driven by definite yet unseen forces. Although scientists can neither precisely describe nor fully understand the forces, most believe that the relatively shallow forces driving the lithospheric plates are coupled with forces originating much deeper in the Earth.

THE EARTH ROTATES IN AN ELLIPTIC ORBIT AROUND THE SUN

GEOID

FORCE AND VELOCITY VECTORS IN THE ORBIT

HOW THE EARTH GETS ITS SHAPE?

THE MAXIMUM GRAVITY FIELD EFFECT OF THE SUN ON THE EARTH

GRAVITY FIELD LINES